

Internship at A*STAR Institute of Chemical and Engineering Science

Done by Alyssa Png Kai Wen (S10192905)

- Singapore's lead public sector R&D agency
- Nurturing talent and leaders
 - Their own research Institutes
 - The wider research community
 - Industry
- Aims to bridge the gap between academia and industry in terms of research and development

(Asia Research News, n.d.)

Carries out world-class research programs in chemistry and chemical engineering sciences

Department:

Process and Catalysis Research

02 DRIFTS

Diffuse Reflectance Infrared Fourier-Transform Spectroscopy

DRIFTS

- IR ray
 - Interacts with the particles
 - Reflect off their surface
- Measure the infrared spectrum
 - Observe the transformation of reactions occuring on the surface of the catalysts

(Geminibv, n.d.)

Testing accuracy of Mass Flow Controller (MFC)

Equation of the graph is utilised to find the actual flow rate of each set flow rate

- Used to minimise instrumental error
- Ensure the credibility of the experimental data

Maintain the temperature of the DRIFTS chamber at optimum

(Harrick Scientific Products, Inc., 2016)

(Perkin Elmer, n.d.)

DRIFTS Attachment

6 strategically placed mirrors

- 1. Direct IR light onto sample:
 - a. Diffuse reflectance to occur
- 2. Reflect light from sample to detector

Plotting of graphs

A	B	C	D	E	F	G	н	1	J	K	L	M	N	0	P	Q	R	S	Т	U	V
		1stpulse-	80to120sec		3rdpulse-	80to120sec		6thpulse	-80to120se	c	8thpulse-	80to120sec									
														1.2 1 30.8 60.6 40.4 0.2 0 10	000 120	Samp 0 1400 Wavenumb	1600 18(rer(cm-1)	e-step	1stp 1stp 3rdp 6thp 8thp	ulse-80to120 ulse-80to120 ulse-80to120 ulse-80to120	isec

To ease plotting of Graphs:

- Set up templates
- Copy data over and graph will be plotted automatically

Stepwise Pulsing

Absorption

- 1. Gas reactant A
- 2. One Spectrum taken after 30mins

Pulsing

- 1. Gas Reactant B (10sec)
- 2. **Desorption for 2 mins:**
 - a. 20,40,80,120 sec
- 3. 8th pulses

$$01 - 02 - 03 - 04$$

Pretreatment

- 1. Reduction of sample
- 2. Background spectrum

Desorption

- 1. Helium, inert gas
 - a. Physically absorbed
- 2. Spectrum taken every 5 mins for 30 mins

Stepwise: Absorption and Desorption peak

Stepwise: Pulsing

Stepwise Continuous Flow

Absorption 1

- 1. Gas reactant A
- 2. One Spectrum taken after 30mins

Absorption 2

- 1. Gas Reactant B
- 2. First 2 mins:
 - a. 40,80,120 sec
- 3. Every 2 mins for 30 mins

$$01 - 02 - 03 - 04$$

Pretreatment

- 1. Reduction of sample
- 2. Background spectrum

Desorption

- 1. Helium, inert gas
 - a. Physically absorbed
- 2. Spectrum taken every 5 mins for 30 mins

Stepwise: Continuous Flow

Mixed Gas

Pretreatment

- 1. Reduction of sample
- 2. Background spectrum

01

Absorption

1. Mixed Gas:

02

- a. Same Flow rate for both Gas reactants
- 2. First 2 mins:
 - a. 40, 80,120 sec
- 3. Every 3 mins for 30 mins

DATA ANALYSIS

01: Low Intensity peaks

- Height < 0.01
- Dark samples
 - Low diffuse reflectance occurrence
- Chemical Composition, Preparation method and KBr

02: Label peaks

Each peak represents respective species of intermediate or product

- Reference tables:
 - Matches the obtained peaks and reference based on wavelength
- Sample = product

1	IR Absorptions of Common Functional Groups							
Functional Group	Absorption Location (cm ⁻¹)	Absorption Intensity						
Alkane (C-H)	2,850-2,975	Medium to strong						
Alcohol (0-H)	3,4003,700	Strong, broad						
Alkene (C=C) (C=C-H)	1,640-1,680 3,020-3,100	Weak to medium Medium						
Alkyne (C=C) (C=C-H)	2,100-2,250 3,300	Medium Strong						
Nitrile (C=N)	2,200-2,250	Medium						
Aromatics	1,650-2,000	Weak						
Amines (N-H)	3,300-3,350	Medium						
Carbonyls (C=0) Aldehyde (CHO) Ketone (RCOR) Ester (RCOOR) Acid (RCOOH)	1,720-1,740 1,715 1,735-1,750 1,700-1,725	Strong						
		(Winter, n.d.						

19

03: Understanding peaks

- Decrease in peaks:
 - Intermediate species converted to a product
- Increase in peaks:
 - May result from the decrease of another peak
- Shift in peaks:
 - Addition or deletion a new species
- Shoulders(circled):
 - Formation of a new product
- Overall shape of the spectra:
 - Samples with similar composition and structure
 - Determine the reliability and credibility of experiment data

03 CATALYST

Catalysts are foreign substances responsible for speeding up chemical reactions.

Calculation a lot easier:

• Minimise calculation errors

Log in all previous calculations to refer to in the future

A	В	C	D	E	F	G	Н
Chemical	MW	Volume			Elements	MW	
NaOH		250			H	1.00797	
Na2CO3		100			He	4.0026	
Urea					Li	6.941	
Ni(NO3)2					Be	9.01218	
Co(NO3)2					В	10.81	
Fe(NO3)3	8				C	12.011	
Mg(NO3)					N	14.0067	
Zn(NO3)2					0	15.9994	
AI(NO3)3					F	18.9984	
CeN309.	6				Ne	20.179	
CH3NO3					Na	22.9898	
						a	

"DATA" sheet stores:

- All the chemical and elements names and MW
- Volume of the various volumetric flasks used

A	В	C	D	E	F	G	н	1	J	K	L	M	N	0	Р	Q	R	S
	Sc	olutions In	Volumet	ric Flask				Catalyst (Solid Reactant)						Catalyst (Liquid Reactant)				
Solution names	Chemical	MolarWeight	Volume(ml)	Concentration	Mole	Mass(g)		Catalyst Name	Chemical	MolarWeight	Mole	Mass		Catalyst Name	Chemical	Concentration (M)	Mole	Volume (mL)
		40	250	1	0.25	10				403.9972	0.00036	0.1474		1		0.009738	0.000025	2.56726227
		105.99	100	0.15	0.015	1.58985					1			1		0.023	0.00000966	0.42
	3.5	375.13	100	0.5	0.05	18.7565												-
	3.	403.9972	100	0.024	0.0024	0.96959												
	2.	290.8	100	0.16	0.016	4.6528												
)2	195.1545	100	0.8277	0.08277	16.1529												
	B.5	375.13	100	0.39	0.039	14,6301												1
	B.9	375.13	100	0.5	0.05	18.7565									-			
	2.	261.4799	100	0.2	0.02	5.2296												1
	2	291.03	100	0.12	0.012	3 49236		1		10 10								1

- Simple basic calculations
- Data validation feature
 - Selection of chemical names
- "VLOOKUP"
 - Find the chemical name in the given cell (J3) in the table given (A1:B201)
 - Print the corresponding MW ("MATCH")

	Name of sample	Reactant A	Fixed mass of A	% of other reactant(s)	Total Mass of other reactant(s)
100			2	2	0.040816327
			2	2	0.040816327
ł					

M2		$\times \checkmark f_x \mid :$	=IFERROP(((NUN	MBERVALUE(LEFT	(L2, FIND(":",L2)-1))*	G2)/((NUMBERV	ALUE(LEFT(L2	2, FIND(":",L2)-1))	*G2)+(NUMBERVALU	E(RIGHT(L2,LEN	(L2)-FIND(":",L2)))*J2))))*
1	F	G	Н	I	J	К	L	М	N	0	Р	
1	Reactant B	Molarweight	Conc of B	Reactant C	Molarweight	Conc of C	B:C	Mass of B	Vol. of B (ml)	Mass of C	Vol. of C (ml)	
2		195.09	0.0095		58.9332	0.02	1:1	0.031347	16.91363397	0.009469	8.033976135	
3		195.09	0.0095		58.9332	0.02	10:1	0.039619	21.37717411	0.001197	1.01541577	
4												

FIND()

- Determine the index of the ":" in the inputted string
- Ratio of B: "LEFT(L2, FIND(":",L2)-1)"
- Ratio of C: "RIGHT(L2, LEN(L2)-FIND(":",L2))

M2	•	\times \checkmark $f_{\rm fr}$:	=IFERROF(((NUN	MBERVALUE(LEFT	(L2, FIND(":",L2)-1))*	G2)/((NUMBER)	/ALUE(LEFT(L2	, FIND(":",L2)-1))	*G2)+(NUMBERVALU	E(RIGHT(L2,LEN	(L2)-FIND(":",L2)))*J2)))*
1	F	G	н	1	J	К		М	N	0	Р	
1	Reactant B	Molarweight	Conc of B	Reactant C	Molarweight	Conc of C	B:C	Mass of B	Vol. of B (ml)	Mass of C	Vol. of C (ml)	
2		195.09	0.0095		58.9332	0.02	1:1	0.031347	16.91363397	0.009469	8.033976135	
3		195.09	0.0095		58.9332	0.02	10:1	0.039619	21.37717411	0.001197	1.01541577	
4				L								

Preparation Methods

Impregnation

Solid sample to fully absorb a liquid substance

(Kaflé, 2019)

Hydrothermal

Obtain solid crystals

- high-temperature aqueous solutions
- high vapour pressure

Precipitation

Insoluble solid

 two or more aqueous solutions

(ProfiLab24.com, n.d.)

Centrifugation

- Balance tube = Sample tube
- Rotor spins
 - Centrifugal force applied onto each particle

Collection Methods

Rotary Evaporator

Efficient removal of the solvent via evaporation

- Lower boiling point
- Rotation

Filtration

- Vacuum pump
 - Draw air within the conical flask
- Solvent is suction through the filter paper

Testing Catalytic Performance

(Science First, 2011)

(Mineral Innovative Technologies, n.d.)

- Particle size
- Hydraulic Press
 - Compress the powder

 $\mathbf{0}$

- Increase particle size
- Crushed large flakes
- Strainer
 - Different Grid size

• Mark center of reactor

Glass Tube

- Create a fixed bed to support sample
 - Fine wool

Testing Catalytic Performance

Gas Chromatography

- Chromatograph
 - Identification of peaks
 - Area of each peak:
 - Concentration
- Compared between
 - different temperature
 - With and without
 - Higher yield of desire products

Reactor

- Gas reactant was introduced
 - Interact with catalyst
- Vertical tube furnace
 - Reaction occurs at different temperature

Chemical Composition

(Geochemical Instrumentation and Analysis, n.d.)

X-ray diffraction analysis (XRD)

Nuclear Magnetic Resonance (NMR) spectrometer (Bruker, n.d.)

X-ray Fluorescence analysis (XRF)

Scanning Electron Microscope (SEM)

(Earth Observatory of Singapore, n.d.)

(Technology Networks, 2020)

Inductively coupled plasma-optical emission (ICP-OES)

Transmission Electron Microscope (TEM) (Gaston & Le, 2020)

30

Conclusion & Reflection

What it takes to be in Research?

Creative and innovative

- Think outside of the box
- Finding the best solution
 - Trials and errors
- Problem-solvers
 - Improve lives

Learning from Failures

- Encounter more failure than success
- Reading other scientist research papers
- Lead to new discoveries:
 - No guarantee outcome

Data analysis

- Essential for the improvement of the project
- Bring about credibility to the research
 - Clear diagrams
 - Convey the message of the research

Lesson Learnt

- 1. Contributions depends on me
 - a. Take initiative
 - i. Ask questions
 - ii. Help out in any way
 - b. Take responsibility
 - i. Improve knowledge on experiments
 - ii. Provide quality work by the end of the date line

2. Independence

- a. Conducting multiple experiments
 - i. Time-management
- b. Troubleshoot
 - i. Think on my toes
 - ii. Make the most out of the resources i had

3. Teamwork

- a. Mutual respect
 - i. Open minded
- b. Effective communication
 - i. Tackling problems

Thank you for your kind attention

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**,and infographics & images by **Freepik**

References

A*STAR. (n.d.). ABOUT A*STAR. Retrieved from Agency for Science, Technology and Research (A*STAR): https://www.a-star.edu.sg/About-A-STAR/overview

Asia Research News. (n.d.). *Institute of Chemical and Engineering Sciences*. Retrieved from Asia Research News: https://www.asiaresearchnews.com/content/institute-chemical-and-engineering-sciences

Bruker. (n.d.). Magnetic Resonance. Retrieved from Bruker: https://www.bruker.com/en/products-and-solutions/mr.html

Bruker. (n.d.). S8 TIGER Series 2. Retrieved from Bruker:

https://www.bruker.com/content/bruker/int/fr/products-and-solutions/elemental-analyzers/xrf-spectrometers/s8-tiger.html

Bu, C., Lopez, G. R., Dukes, C. A., McFadden, L., Ruesch, O., & Li, J.-Y. (2017). Stability of Hydrated Carbonates on Ceres. Icarus.

Earth Observatory of Singapore. (n.d.). Scanning Electron Microscope (SEM) Lab. Retrieved from Earth Observatory of Singapore: https://earthobservatory.sg/facilities/scanning-electron-microscope-sem-lab

Gaston, B., & Le, H. (7 May, 2020). TEM: Bright field versus dark field. Retrieved from Libretexts: https://chem.libretexts.org/Courses/Franklin_and_Marshall_College/Introduction_to_Materials_Characterization__CHM_412_Collaborative_Text/Elect ron_and_Probe_Microscopy/TEM%3A_Bright_field_versus_dark_field#:~:text=One%20of%20the%20main%20differences,to%20c

Geminibv. (n.d.). Brooks Instruments 0154 Control and read out unit. Retrieved from Geminibv: https://www.geminibv.com/labware/brooks-instruments-0154-control-and-read-out-unit/

Geochemical Instrumentation and Analysis. (n.d.). X-ray Powder Diffraction (XRD). Retrieved from Geochemical Instrumentation and Analysis: https://serc.carleton.edu/research_education/geochemsheets/techniques/XRD.html

George Mason University . (20 January , 1998). Gas Chromatography-Mass Spectroscopy. Retrieved from gmu.edu : https://www.gmu.edu/depts/SRIF/tutorial/gcd/gc-ms2.htm

References

Harrick Scientific Products, Inc. (12 October, 2016). *Dehydration of Hexahydrate Nickel Sulfate*. Retrieved from AZO Materials: https://www.azom.com/article.aspx?ArticleID=13195

Kaflé, B. P. (2019). Chemical Analysis and Material Characterization by Spectrophotometry. In B. P. Kaflé, Chemical Analysis and Material Characterization by Spectrophotometry (p. 336). Elsevier; 1st edition. Retrieved from ScienceDirect: https://www.sciencedirect.com/topics/chemistry/hydrothermal-method

Mineral Innovative Technologies. (n.d.). Atlas Manual Hydraulic Pellet Press. Retrieved from Mineral Innovative Technologies: https://www.m-i-t.co.za/product/atlas-manual-hydraulic-pellet-press/

Perkin Elmer. (n.d.). Infrared Spectroscopy. Retrieved from Perkin Elmer: https://www.perkinelmer.com/category/infrared-ir-instruments

Profilab24: (n.d.). IKA Rotary evaporator RV 3 V. Retrieved from Profilab24: https://profilab24.com/en/laboratory/rotary-evaporators/ika-rotary-evaporator-rv-3-v

ProfiLab24.com. (n.d.). Hettich Angle rotor 6-place 35° for Benchtop centrifuge. Retrieved from ProfiLab24.com: https://profilab24.com/en/laboratory/centrifuge-with-vortex-function/hettich-angle-rotor-6-place-35grad-for-benchtop-centrifuge

Science First. (27 January , 2011). Stainless Steel Mesh Sieve Set. Retrieved from Amazon: https://www.amazon.com/Stainless-Steel-Mesh-Sieve-Set/dp/B004L5CLWA

Technology Networks. (14 January, 2020). Agilent 5800 ICP-OES Instrument. Retrieved from Technology Networks: https://www.technologynetworks.com/analysis/products/agilent-5800-icp-oes-instrument-329318

Thermo Fisher Scientific Logo. (n.d.). Praying Mantis[™] Diffuse Reflectance Accessory. Retrieved from Thermo Fisher Scientific: https://www.thermofisher.com/order/catalog/product/222-220000#/222-220000

Winter, D. A. (n.d.). How to Find Functional Groups in the IR Spectrum. Retrieved from dummies: https://www.dummies.com/education/science/chemistry/how-to-find-functional-groups-in-the-ir-spectrum/